fMRI Validation of fNIRS Measurements During a Naturalistic Task

نویسندگان

  • J. Adam Noah
  • Yumie Ono
  • Yasunori Nomoto
  • Sotaro Shimada
  • Atsumichi Tachibana
  • Xian Zhang
  • Shaw Bronner
  • Joy Hirsch
چکیده

We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson's disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of group-level, source localized activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultaneous fNIRS-fMRI during parametric median nerve stimulation.

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique, which uses light to measure changes in cerebral blood oxygenation through sensors placed on the surface of the scalp. We recorded concurrent fNIRS with magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) in order to investigate the group-level correspondence of these measures with so...

متن کامل

Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI

Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functio...

متن کامل

Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI

We report an experimental validation and applications of the new hemodynamic model presented in the companion article (Fantini, 2014-this issue) both in the frequency domain and in the time domain. In the frequency domain, we have performed diffuse optical measurements for coherent hemodynamics spectroscopy (CHS) on the brain and calf muscle of human subjects, showing that the hemodynamic model...

متن کامل

The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy

A major methodological challenge of functional near-infrared spectroscopy (fNIRS) is its high sensitivity to haemodynamic fluctuations in the scalp. Superficial fluctuations contribute on the one hand to the physiological noise of fNIRS, impairing the signal-to-noise ratio, and may on the other hand be erroneously attributed to cerebral changes, leading to false positives in fNIRS experiments. ...

متن کامل

Monitoring attentional state with fNIRS

The ability to distinguish between high and low levels of task engagement in the real world is important for detecting and preventing performance decrements during safety-critical operational tasks. We therefore investigated whether functional Near Infrared Spectroscopy (fNIRS), a portable brain neuroimaging technique, can be used to distinguish between high and low levels of task engagement du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2015